Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.851
Filtrar
1.
Tidsskr Nor Laegeforen ; 144(3)2024 Feb 27.
Artigo em Norueguês, Inglês | MEDLINE | ID: mdl-38451073

RESUMO

Background: African sleeping sickness is a neglected tropical disease seldom seen in European travellers. Case presentation: While working in Eastern Africa, a Norwegian man in his sixties developed weakness and fever. He was prescribed doxycycline after a negative malaria rapid test. On the third day of illness he returned to Norway and was admitted to the hospital upon arrival. On admission he was somnolent with fever, tachypnoea, tachycardia, jaundice, a hyperaemic rash, oliguria and haematuria. Blood tests revealed leukopenia, thrombocytopaenia, renal failure and liver dysfunction. Rapid tests were negative for malaria and dengue. Blood microscopy revealed high parasitaemia with trypanosomes indicating human African sleeping-sickness. He had been bitten by a tsetse fly 11 days prior in an area endemic for Trypanosoma brucei gambiense. However, the clinical picture was consistent with Trypanosoma brucei rhodesiense infection (East African sleeping sickness). Four days after starting treatment with suramin, spinal fluid examination revealed mild mononuclear pleocytosis but no visible parasites. Melarsoprol treatment for possible encephalitis was considered but suramin treatment was continued alone. He improved and remains healthy seven years later. PCR on blood was positive for T. b. rhodesiense. Interpretation: African sleeping sickness can also affect tourists to endemic areas. Onset can be acute, life-threatening and requires treatment with antiparasitic drugs not generally available in Norwegian hospitals.


Assuntos
Exantema , Malária , Tripanossomíase Africana , Humanos , Masculino , Doxiciclina , Febre/etiologia , Suramina , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/tratamento farmacológico , Pessoa de Meia-Idade , Idoso
2.
J Alzheimers Dis ; 98(1): 301-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427475

RESUMO

Background: Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective: In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods: Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100µM suramin for 72 h, followed by assessments for amyloid-ß, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results: Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions: These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/patologia , Suramina/farmacologia , Suramina/metabolismo , Proteínas tau/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Prosencéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Sirolimo/farmacologia , Cloroquina/metabolismo , Cloroquina/farmacologia
3.
J Biol Chem ; 300(3): 105752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354780

RESUMO

Cullin (CUL)-RING (Really Interesting New Gene) E3 ubiquitin (Ub) ligases (CRLs) are the largest E3 family. The E3 CRL core ligase is a subcomplex formed by the CUL C-terminal domain bound with the ROC1/RBX1 RING finger protein, which acts as a hub that mediates and organizes multiple interactions with E2, Ub, Nedd8, and the ARIH family protein, thereby resulting in Ub transfer to the E3-bound substrate. This report describes the modulation of CRL-dependent ubiquitination by small molecule compounds including KH-4-43, #33, and suramin, which target the CRL core ligases. We show that both KH-4-43 and #33 inhibit the ubiquitination of CK1α by CRL4CRBN. However, either compound's inhibitory effect on this reaction is significantly reduced when a neddylated form of CRL4CRBN is used. On the other hand, both #33 and KH-4-43 inhibit the ubiquitination of ß-catenin by CRL1ß-TrCP and Nedd8-CRL1ß-TrCP almost equally. Thus, neddylation of CRL1ß-TrCP does not negatively impact the sensitivity to inhibition by #33 and KH-4-43. These findings suggest that the effects of neddylation to alter the sensitivity of CRL inhibition by KH-4-43/#33 is dependent upon the specific CRL type. Suramin, a compound that targets CUL's basic canyon, can effectively inhibit CRL1/4-dependent ubiquitination regardless of neddylation status, in contrast to the results observed with KH-4-43/#33. This observed differential drug sensitivity of KH-4-43/#33 appears to echo CUL-specific Nedd8 effects on CRLs as revealed by recent high-resolution structural biology efforts. The highly diversified CRL core ligase structures may provide opportunities for specific targeting by small molecule modulators.


Assuntos
Ligantes , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Culina/metabolismo , Suramina/farmacologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteína NEDD8/metabolismo
4.
Metabolomics ; 20(2): 25, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393408

RESUMO

INTRODUCTION: Human African trypanosomiasis, commonly known as sleeping sickness, is a vector-borne parasitic disease prevalent in sub-Saharan Africa and transmitted by the tsetse fly. Suramin, a medication with a long history of clinical use, has demonstrated varied modes of action against Trypanosoma brucei. This study employs a comprehensive workflow to investigate the metabolic effects of suramin on T. brucei, utilizing a multimodal metabolomics approach. OBJECTIVES: The primary aim of this study is to comprehensively analyze the metabolic impact of suramin on T. brucei using a combined liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) approach. Statistical analyses, encompassing multivariate analysis and pathway enrichment analysis, are applied to elucidate significant variations and metabolic changes resulting from suramin treatment. METHODS: A detailed methodology involving the integration of high-resolution data from LC-MS and NMR techniques is presented. The study conducts a thorough analysis of metabolite profiles in both suramin-treated and control T. brucei brucei samples. Statistical techniques, including ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA), ANOVA 2 analysis, and bootstrap tests, are employed to discern the effects of suramin treatment on the metabolomics outcomes. RESULTS: Our investigation reveals substantial differences in metabolic profiles between the control and suramin-treated groups. ASCA and PCA analysis confirm distinct separation between these groups in both MS-negative and NMR analyses. Furthermore, ANOVA 2 analysis and bootstrap tests confirmed the significance of treatment, time, and interaction effects on the metabolomics outcomes. Functional analysis of the data from LC-MS highlighted the impact of treatment on amino-acid, and amino-sugar and nucleotide-sugar metabolism, while time effects were observed on carbon intermediary metabolism (notably glycolysis and di- and tricarboxylic acids of the succinate production pathway and tricarboxylic acid (TCA) cycle). CONCLUSION: Through the integration of LC-MS and NMR techniques coupled with advanced statistical analyses, this study identifies distinctive metabolic signatures and pathways associated with suramin treatment in T. brucei. These findings contribute to a deeper understanding of the pharmacological impact of suramin and have the potential to inform the development of more efficacious therapeutic strategies against African trypanosomiasis.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Suramina/farmacologia , Suramina/metabolismo , Suramina/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Metabolômica/métodos , Trypanosoma brucei brucei/metabolismo , Fluxo de Trabalho
5.
Eur J Pharmacol ; 968: 176422, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365108

RESUMO

Vascular smooth muscle cells (VSMCs) contribute to neointimal hyperplasia (NIH) after vascular injury, a common feature of vascular remodelling disorders. Suramin is known to exert antitumour effects by inhibiting the proliferation of various tumour cells; however, its effects and mechanism on VSMCs remain unclear. This study investigated the effects of suramin on human aortic smooth muscle cells (HASMCs), rat aortic smooth muscle cells (RASMCs) and NIH to examine its suitability for the prevention of vascular remodelling disorders. In vitro, suramin administration reduced platelet-derived growth factor type BB (PDGF-BB)-stimulated proliferation, migration, and dedifferentiation of VSMCs through a transforming growth factor beta receptor 1 (TGFBR1)/Smad2/3-dependent pathway. Suramin dramatically inhibited NIH ligation in the left common carotid artery (LCCA) vivo. Therefore, our results indicate that suramin protects against the development of pathological vascular remodelling by attenuating VSMCs proliferation, migration, and phenotypic transformation and may be used as a potential medicine for the treatment of NIH.


Assuntos
Neointima , Suramina , Ratos , Humanos , Animais , Hiperplasia/patologia , Proliferação de Células , Suramina/farmacologia , Suramina/metabolismo , Neointima/patologia , Músculo Liso Vascular , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Remodelação Vascular , Becaplermina/farmacologia , Miócitos de Músculo Liso , Movimento Celular , Células Cultivadas
6.
Z Naturforsch C J Biosci ; 79(1-2): 13-24, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38265042

RESUMO

SARS-CoV-2 nsp12, the RNA-dependent RNA-polymerase plays a crucial role in virus replication. Monitoring the effect of its emerging mutants on viral replication and response to antiviral drugs is important. Nsp12 of two Egyptian isolates circulating in 2020 and 2021 were sequenced. Both isolates included P323L, one included the A529V. Tracking A529V mutant frequency, it relates to the transience peaked C.36.3 variant and its parent C.36, both peaked worldwide on February-August 2021, enlisted as high transmissible variants under investigation (VUI) on May 2021. Both Mutants were reported to originate from Egypt and showed an abrupt low frequency upon screening, we analyzed all 1104 nsp12 Egyptian sequences. A529V mutation was in 36 records with an abrupt low frequency on June 2021. As its possible reappearance might obligate actions for a candidate VUI, we analyzed the predicted co-effect of P323L and A529V mutations on protein stability and dynamics through protein structure simulations. Three available structures for drug-nsp12 interaction were used representing remdesivir, suramin and favipiravir drugs. Remdesivir and suramin showed an increase in structure stability and considerable change in flexibility while favipiravir showed an extreme interaction. Results predict a favored efficiency of the drugs except for favipiravir in case of the reported mutations.


Assuntos
Amidas , COVID-19 , Pirazinas , SARS-CoV-2 , Humanos , Egito , SARS-CoV-2/genética , Suramina , Mutação , Antivirais/farmacologia , RNA
7.
Cell Biol Int ; 48(3): 369-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225667

RESUMO

Dental pulp cells play a crucial role in maintaining the balance of the pulp tissue. They actively respond to bacterial inflammation by producing proinflammatory cytokines, particularly interleukin-6 (IL-6). While many cell types release adenosine triphosphate (ATP) in response to various stimuli, the mechanisms and significance of ATP release in dental pulp cells under inflammatory conditions are not well understood. This study aimed to investigate ATP release and its relationship with IL-6 during the inflammatory response in immortalized human dental pulp stem cells (hDPSC-K4DT) following lipopolysaccharide (LPS) stimulation. We found that hDPSC-K4DT cells released ATP extracellularly when exposed to LPS concentrations above 10 µg/mL. ATP release was exclusively attenuated by N-ethylmaleimide, whereas other inhibitors, including clodronic acid (a vesicular nucleotide transporter inhibitor), probenecid (a selective pannexin-1 channel inhibitor), meclofenamic acid (a selective connexin 43 inhibitor), suramin (a nonspecific P2 receptor inhibitor), and KN-62 (a specific P2X7 antagonist), did not exhibit any effect. Additionally, LPS increased IL-6 mRNA expression, which was mitigated by the ATPase apyrase enzyme, N-ethylmaleimide, and suramin, but not by KN-62. Moreover, exogenous ATP induced IL-6 mRNA expression, whereas ATPase apyrase, N-ethylmaleimide, and suramin, but not KN-62, diminished ATP-induced IL-6 mRNA expression. Overall, our findings suggest that LPS-induced ATP release stimulates the IL-6 pathway through P2-purinoceptor, indicating that ATP may function as an anti-inflammatory signal, contributing to the maintenance of dental pulp homeostasis.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Trifosfato de Adenosina , Interleucina-6 , Humanos , Trifosfato de Adenosina/metabolismo , Lipopolissacarídeos/farmacologia , Etilmaleimida , Suramina/farmacologia , Apirase , Polpa Dentária/metabolismo , RNA Mensageiro/genética , Adenosina Trifosfatases , Receptores Purinérgicos
8.
Gene ; 893: 147888, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37839766

RESUMO

BACKGROUND: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), acting as one common sepsis-associated organ injury, induces uncontrolled and self-amplifies pulmonary inflammation. Given the lack of clinically effective approaches, the mortality rate of it still remains high. Suramin(SUR), as an antiparasitic drug initially, was found to ameliorate sepsis associated ALI in our previous work. However, the underlying mechanism of its protective effects has not been clarified. Pyroptosis, categorized as an inflammatory form of programmed cell death, could aggravate lung inflammatory responses via inducing alveolar macrophages (AM) pyroptosis. METHODS: MH-S AM cell line was stimulated with or without lipopolysaccharide (LPS) or suramin, and the differential expression genes (DEGs) were excavated using RNA sequencing (RNA-seq). To identify the regulatory roles of these genes, pyroptosis-related genes (PRGs), GO/KEGG and GSEA analysis were conducted. We also performed WB, qRTPCR and ELISA to validate the RNA-seq results and further expound the protective effect of suramin. RESULTS: 624 DEGs were identified between control (CON) and lipopolysaccharide (LPS) groups, and enrichment analysis of these genes revealed significantly enriched pathways that related to immune system and signal transduction. Meanwhile, 500 DEGs were identified in LPS/SUR+LPS group. In addition to the pathways mentioned above, IL-17 pathway and C-type lectin receptor signaling pathway were also enriched. All 6 pathways were connected with pyroptosis. Concurrently, the "DESeq2" R package was used to identify differentially expressed PRGs. Nod1, Nod2, interleukin (IL)-1b, IL-6, tumor necrosis factor (TNF), NLRP3 were upregulated under LPS stimulation. Then, in SUR+LPS group, Nod2, IL-6, IL-1b, NLRP3 were downregulated. The validation results of WB, qRT-PCR, and ELISA showed: the protein and mRNA expression levels of NLRP3, caspase-1, GSDMD and the concentrations of IL-1b, IL-18 were decreased when treated with suramin and LPS. CONCLUSION: Suramin could inhibit NLRP3/caspase-1/GSDMD canonical pyroptosis pathway in LPS-induced MH-S alveolar macrophages.


Assuntos
Macrófagos Alveolares , Sepse , Humanos , Macrófagos Alveolares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Lipopolissacarídeos/farmacologia , Suramina/farmacologia , Interleucina-6/genética , RNA-Seq , Inflamassomos/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/farmacologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia
9.
Parasitol Res ; 123(1): 11, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057659

RESUMO

Suramin was the first drug developed using the approach of medicinal chemistry by the German Bayer company in the 1910s for the treatment of human African sleeping sickness caused by the two subspecies Trypanosoma brucei gambiense and Trypanosoma brucei rhodesienese. However, the drug was politically instrumentalized by the German government in the 1920s in an attempt to regain possession of its former African colonies lost after the First World War. For this reason, the formula of suramin was kept secret for more than 10 years. Eventually, the French pharmacist Ernest Fourneau uncovered the chemical structure of suramin by reverse engineering and published the formula of the drug in 1924. During the Nazi period, suramin became the subject of colonial revisionism, and the development of the drug was portrayed in books and films to promote national socialist propaganda. Ever since its discovery, suramin has also been tested for bioactivity against numerous other infections and diseases. However, sleeping sickness caused by Trypanosoma brucei rhodesiense is the only human disease for which treatment with suramin is currently approved.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Suramina/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense
10.
Lipids Health Dis ; 22(1): 222, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093311

RESUMO

BACKGROUND: Previous studies demonstrated that mast cells with their degranulated component heparin are the major endogenous factors that stimulate preadipocyte differentiation and promote fascial adipogenesis, and this effect is related to the structure of heparin. Regarding the structural and physiological properties of the negatively charged polymers, hexasulfonated suramin, a centuries-old medicine that is still used for treating African trypanosomiasis and onchocerciasis, is assumed to be a heparin-related analog or heparinoid. This investigation aims to elucidate the influence of suramin on the adipogenesis. METHODS: To assess the influence exerted by suramin on adipogenic differentiation of primary white adipocytes in rats, this exploration was conducted both in vitro and in vivo. Moreover, it was attempted to explore the role played by the sulfonic acid groups present in suramin in mediating this adipogenic process. RESULTS: Suramin demonstrated a dose- and time-dependent propensity to stimulate the adipogenic differentiation of rat preadipocytes isolated from the superficial fascia tissue and from adult adipose tissue. This stimulation was concomitant with a notable upregulation in expression levels of pivotal adipogenic factors as the adipocyte differentiation process unfolded. Intraperitoneal injection of suramin into rats slightly increased adipogenesis in the superficial fascia and in the epididymal and inguinal fat depots. PPADS, NF023, and NF449 are suramin analogs respectively containing 2, 6, and 8 sulfonic acid groups, among which the last two moderately promoted lipid droplet formation and adipocyte differentiation. The number and position of sulfonate groups may be related to the adipogenic effect of suramin. CONCLUSIONS: Suramin emerges as a noteworthy pharmaceutical agent with the unique capability to significantly induce adipocyte differentiation, thereby fostering adipogenesis.


Assuntos
Adipogenia , Suramina , Ratos , Animais , Suramina/farmacologia , Antiparasitários/farmacologia , Diferenciação Celular , Adipócitos Brancos , Heparina/farmacologia
11.
Biomed Pharmacother ; 168: 115814, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918256

RESUMO

Recently, our group identified serine-protease hepsin from primary tumor as a biomarker of metastasis and thrombosis in patients with localized colorectal cancer. We described hepsin promotes invasion and thrombin generation of colorectal cancer cells in vitro and in vivo and identified venetoclax as a hepsin inhibitor that suppresses these effects. Now, we aspire to identify additional hepsin inhibitors, aiming to broaden the therapeutic choices for targeted intervention in colorectal cancer. METHODS: We developed a virtual screening based on molecular docking between the hepsin active site and 2000 compounds from DrugBank. The most promising drug was validated in a hepsin activity assay. Subsequently, we measured the hepsin inhibitor effect on colorectal cancer cells with basal or overexpression of hepsin via wound-healing, gelatin matrix invasion, and plasma thrombin generation assays. Finally, a zebrafish model determined whether hepsin inhibition reduced the invasion of colorectal cancer cells overexpressing hepsin. RESULTS: Suramin was the most potent hepsin inhibitor (docking score: -11.9691 Kcal/mol), with an IC50 of 0.66 µM. In Caco-2 cells with basal or overexpression of hepsin, suramin decreased migration and significantly reduced invasion and thrombin generation. Suramin did not reduce the thrombotic phenotype in the hepsin-negative colorectal cancer cells HCT-116 and DLD-1. Finally, suramin significantly reduced the in vivo invasion of Caco-2 cells overexpressing hepsin. CONCLUSION: Suramin is a novel hepsin inhibitor that reduces its protumorigenic and prothrombotic effects in colorectal cancer cells. This suggests the possibility of repurposing suramin and its derivatives to augment the repertoire of molecular targeted therapies against colorectal cancer.


Assuntos
Neoplasias Colorretais , Tripanossomíase , Animais , Humanos , Suramina/farmacologia , Suramina/uso terapêutico , Trombina , Células CACO-2 , Simulação de Acoplamento Molecular , Peixe-Zebra , Fenótipo , Neoplasias Colorretais/tratamento farmacológico
12.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834118

RESUMO

In short-term diabetes (3 weeks), suramin, a drug used clinically, affects renal function and the expression of vascular endothelial growth factor A (VEGF-A), which may be involved in the pathogenesis of diabetic nephropathy, the main cause of end-stage renal disease. In the present study, we evaluated the long-term (11 weeks) effects of suramin (10 mg/kg, i.p., once-weekly) in diabetic rats. Concentrations of VEGF-A, albumin, soluble adhesive molecules (sICAM-1, sVCAM-1), nucleosomes, and thrombin-antithrombin complex (TAT) were measured by ELISA, total protein was measured using a biuret reagent. Glomerular expression of VEGF-A was evaluated by Western blot, mRNA for VEGF-A receptors in the renal cortex by RT-PCR. The vasoreactivity of the interlobar arteries to acetylcholine was assessed by wire myography. Long-term diabetes led to an increased concentration of VEGF-A, TAT, and urinary excretion of total protein and albumin, and a decrease in the concentration of sVCAM-1. We have shown that suramin in diabetes reduces total urinary protein excretion and restores the relaxing properties of acetylcholine relaxation properties to non-diabetic levels. Suramin had no effect on glomerular expression VEGF-A expression and specific receptors, and on sICAM-1 and nucleosomes concentrations in diabetic rats. In conclusion, the long-term effect of suramin on the kidneys in diabetes, expressed in the reduction of proteinuria and the restoration of endothelium-dependent relaxation of the renal arteries, can be considered as potentially contributing to the reduction/slowing down of the development of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Suramina/farmacologia , Estreptozocina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Acetilcolina/metabolismo , Nucleossomos/metabolismo , Rim/metabolismo , Albuminas/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-37757728

RESUMO

Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense, and it is also used for surra in camels caused by Trypanosoma evansi. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed T. brucei RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form T. b. rhodesiense under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of T. brucei RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of T. evansi RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either T. brucei RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Suramina/farmacologia , Suramina/uso terapêutico , DNA Helicases/genética , Trypanosoma/genética , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei brucei/genética
14.
Cell Biochem Biophys ; 81(4): 697-706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658974

RESUMO

In our previous report, the unique architecture of the catalytic chamber of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), which harbours two distinctive binding sites, was fully characterized at molecular level. The significant differences in the two binding sites BS1 and BS2 in terms of binding pockets motif, as well as the preferential affinities of eight anti-viral drugs to each of the two binding sites were described. Recent Cryogenic Electron Microscopy (Cryo-EM) studies on the RdRp revealed that two suramin molecules, a SARS-CoV-2 inhibitor, bind to RdRp in two different sites with distinctive interaction landscape. Here, we provide the first account of investigating the combined inhibitor binding to both binding sites, and whether the binding of two inhibitors molecules concurrently is "Cooperative binding" or not. It should be noted that the binding of inhibitors to different sites do not necessary constitute mutually independent events, therefore, we investigated two scenarios to better understand cooperativity: simultaneous binding and sequential binding. It has been demonstrated by binding free energy calculations (MM/PBSA) and piecewise linear potential (PLP) interaction energy analysis that the co-binding of two suramin molecules is not cooperative in nature; rather, when compared to individual binding, both molecules adversely affect one another's binding affinities. This observation appeared to be primarily due to RdRp's rigidity, which prevented both ligands from fitting comfortably within the catalytic chamber. Instead, the suramin molecules showed a tendency to change their orientation within the binding pockets in order to maintain their binding to the protein, but at the expense of the ligand internal energies. Although co-binding resulted in the loss of several important key interactions, a few interactions were conserved, and these appear to be crucial in preserving the binding of ligands in the active site. The structural and mechanistic details of this study will be useful for future research on creating and developing RdRp inhibitors against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Suramina/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
15.
Drug Des Devel Ther ; 17: 2051-2061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457890

RESUMO

Purpose: Suramin is a multifunctional molecule with a wide range of potential applications, including parasitic and viral diseases, as well as cancer. Methods: A double-blinded, randomized, placebo-controlled single ascending dose study was conducted to investigate the safety, tolerability, and pharmacokinetics of suramin in healthy Chinese volunteers. A total of 36 healthy subjects were enrolled. All doses of suramin sodium and placebo were administered as a 30-minute infusion. Blood and urine samples were collected at the designated time points for pharmacokinetic analysis. Safety was assessed by clinical examinations and adverse events. Results: After a single dose, suramin maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to the time of the last measurable concentration (AUClast) increased in a dose-proportional manner. The plasma half-life (t1/2) was dose-independent, average 48 days (range 28-105 days). The cumulative percentages of the dose excreted in urine over 7 days were less than 4%. Suramin can be detected in urine samples for longer periods (more than 140 days following infusion). Suramin was generally well tolerated. Treatment-emergent adverse events (TEAEs) were generally mild in severity. Conclusion: The PK and safety profiles of suramin in Chinese subjects indicated that 10 mg/kg or 15 mg/kg could be an appropriate dose in a future multiple-dose study.


Assuntos
População do Leste Asiático , Suramina , Humanos , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Meia-Vida , Voluntários Saudáveis , Suramina/administração & dosagem , Suramina/efeitos adversos , Suramina/sangue , Suramina/farmacocinética , Suramina/urina
16.
Bioorg Med Chem ; 92: 117424, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37517101

RESUMO

Osteoarthritis is a chronic degenerative joint disease affecting millions of people worldwide, with no disease-modifying drugs currently available to treat the disease. Tissue inhibitor of metalloproteinases 3 (TIMP-3) is a potential therapeutic target in osteoarthritis because of its ability to inhibit the catabolic metalloproteinases that drive joint damage by degrading the cartilage extracellular matrix. We previously found that suramin inhibits cartilage degradation through its ability to block endocytosis and intracellular degradation of TIMP-3 by low-density lipoprotein receptor-related protein 1 (LRP1), and analysis of commercially available suramin analogues indicated the importance of the 1,3,5-trisulfonic acid substitutions on the terminal naphthalene rings for this activity. Here we describe synthesis and structure-activity relationship analysis of additional suramin analogues using ex vivo models of TIMP-3 trafficking and cartilage degradation. This showed that 1,3,6-trisulfonic acid substitution of the terminal naphthalene rings was also effective, and that the protective activity of suramin analogues depended on the presence of a rigid phenyl-containing central region, with para/para substitution of these phenyl rings being most favourable. Truncated analogues lost protective activity. The physicochemical characteristics of suramin and its analogues indicate that approaches such as intra-articular injection would be required to develop them for therapeutic use.


Assuntos
Osteoartrite , Inibidor Tecidual de Metaloproteinase-3 , Humanos , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Inibidor Tecidual de Metaloproteinase-3/farmacologia , Inibidor Tecidual de Metaloproteinase-3/uso terapêutico , Suramina/farmacologia , Suramina/metabolismo , Suramina/uso terapêutico , Cartilagem/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Metaloproteases/uso terapêutico
17.
J Immunol ; 211(4): 648-657, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37405700

RESUMO

Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.


Assuntos
Histonas , Suramina , Camundongos , Animais , Histonas/metabolismo , Suramina/farmacologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Hemorragia
18.
Neuroscience ; 521: 134-147, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142180

RESUMO

To examine whether resveratrol (RSV), an activator of silent mating-type information regulation 2 homolog 1 (SIRT1), can reverse the disruption of lipid metabolism caused by ß-amyloid peptide (Aß), APP/PS1 mice or cultured primary rat neurons were treated with RSV, suramin (inhibitor of SIRT1), ZLN005, a stimulator of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), or PGC-1α silencing RNA. In the brains of the APP/PS1 mice, expressions of SIRT1, PGC-1α, low-density lipoprotein receptor (LDLR) and very LDLR (VLDLR) were reduced at the protein and, in some cases, mRNA levels; while the levels of the proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein E (ApoE), total cholesterol and LDL were all elevated. Interestingly, these changes were reversed by administration of RSV, while being aggravated by suramin. Furthermore, activation of PGC-1α, but inhibition of SIRT1, decreased the levels of PCSK9 and ApoE, while increased those of LDLR and VLDLR in the neurons exposed to Aß, and silencing PGC-1α, but activation of SIRT1, did not influence the levels of any of these proteins. These findings indicate that RSV can attenuate the disruption of lipid metabolism observed in the brains of APP mice and in primary neurons exposed to Aß by activating SIRT1, in which the mechanism may involve subsequently affecting PGC-1α.


Assuntos
Precursor de Proteína beta-Amiloide , Pró-Proteína Convertase 9 , Ratos , Camundongos , Animais , Resveratrol/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Pró-Proteína Convertase 9/metabolismo , Sirtuína 1/metabolismo , Metabolismo dos Lipídeos , Presenilina-1/metabolismo , Suramina/metabolismo , Neurônios/metabolismo , Apolipoproteínas E , Encéfalo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
19.
Int Immunopharmacol ; 120: 110295, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182454

RESUMO

Osteoarthritis (OA)-the most prevalent of arthritis diseases-is a complicated pathogenesis caused by cartilage degeneration and synovial inflammation. Suramin has been reported to enhance chondrogenic differentiation. However, the therapeutic effect of suramin on OA-induced cartilage destruction has remained unclear. Suramin is an anti-parasitic drug that has potent anti-purinergic properties. This study investigated the protective effects and underlying mechanisms of suramin on articular cartilage degradation using an in vitro study and mice model with post-traumatic OA. We found that suramin markedly suppressed the IL-1ß increased expression of matrix destruction proteases-such as ADAMT4, ADAMTS5, MMP3, MMP13, and inflammatory mediators-including the iNOS, COX2, TNFα, and IL-1ß; while greatly enhancing the synthesis of cartilage anabolic factors-such as COL2A1, Aggrecan and SOX9 in IL-1ß-induced porcine chondrocytes. In vivo experiments showed that intra-articular injection of suramin ameliorated cartilage degeneration and inhibited synovial inflammation in an anterior cruciate ligament transection (ACLT)-induced OA mouse model. In mechanistic studies, we found that exogenous supplementation of suramin can activate Nrf2, and accordingly inhibit the nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB) and mitogen-activated protein kinase (MAPK) pathways, thereby alleviating the inflammation and ECM degeneration of chondrocytes stimulated by IL-1ß. In addition, suramin also repolarized M1 macrophages to the M2 phenotype, further reducing the apoptosis of chondrocytes. Collectively, the results of the study suggests that suramin is a potential drugs which could serve as a facilitating drug for the application of OA therapy toward clinical treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Suínos , NF-kappa B/metabolismo , Condrócitos , Fator 2 Relacionado a NF-E2/metabolismo , Suramina/farmacologia , Suramina/uso terapêutico , Suramina/metabolismo , Osteoartrite/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico , Cartilagem Articular/patologia , Macrófagos/metabolismo , Interleucina-1beta/metabolismo
20.
Commun Biol ; 6(1): 387, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031303

RESUMO

SARS-CoV-2 receptor binding domains (RBDs) interact with both the ACE2 receptor and heparan sulfate on the surface of host cells to enhance SARS-CoV-2 infection. We show that suramin, a polysulfated synthetic drug, binds to the ACE2 receptor and heparan sulfate binding sites on the RBDs of wild-type, Delta, and Omicron variants. Specifically, heparan sulfate and suramin had enhanced preferential binding for Omicron RBD, and suramin is most potent against the live SARS-CoV-2 Omicron variant (B.1.1.529) when compared to wild type and Delta (B.1.617.2) variants in vitro. These results suggest that inhibition of live virus infection occurs through dual SARS-CoV-2 targets of S-protein binding and previously reported RNA-dependent RNA polymerase inhibition and offers the possibility for this and other polysulfated molecules to be used as potential therapeutic and prophylactic options against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Suramina/farmacologia , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus , Heparitina Sulfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...